博客
关于我
poj1651——最优矩阵链乘
阅读量:651 次
发布时间:2019-03-15

本文共 1003 字,大约阅读时间需要 3 分钟。

为了解决这个问题,我们需要找到一种方法来最小化乘法谜题的总得分。这个问题可以通过动态规划来解决,通过递归地分割区间并计算最小得分。

方法思路

  • 问题分析:每次只能拿取中间的卡片,得分是当前卡片的值乘以左右两张卡片的值之和。目标是通过动态规划找到最小的总得分。
  • 动态规划状态定义:定义 dp[i][j] 表示从第 i 张卡片到第 j 张卡片之间的最小得分。
  • 状态转移方程:对于每个区间 [i, j],遍历所有可能的中间点 k,计算 dp[i][j]dp[i][k] + dp[k][j] + a[i] * a[k] * a[j]
  • 边界条件:当 j == i + 1 时,dp[i][j] = 0,因为没有卡片可取。
  • 解决代码

    n = int(input())a = list(map(int, input().split()))INF = float('inf')dp = [[INF] * n for _ in range(n)]# 初始化相邻卡片的得分为0for i in range(n - 1):    dp[i][i+1] = 0# 处理区间长度从3到nfor length in range(3, n + 1):    for i in range(n - length + 1):        j = i + length - 1        for k in range(i + 1, j):            current = dp[i][k] + dp[k][j] + a[i] * a[k] * a[j]            if current < dp[i][j]:                dp[i][j] = currentprint(dp[0][n-1])

    代码解释

  • 读取输入:读取卡片数量 n 和卡片上的数字数组 a
  • 初始化动态规划数组:创建一个大小为 n x n 的数组 dp,初始值设为无穷大。
  • 边界条件处理:对于相邻的卡片,dp[i][i+1] 设为0,因为没有卡片可取。
  • 处理区间长度:从3到 n 处理每个区间长度,确保较小的区间先处理。
  • 计算最小得分:对于每个区间 [i, j],遍历所有可能的中间点 k,更新 dp[i][j] 的最小值。
  • 输出结果:打印 dp[0][n-1],即最小的总得分。
  • 通过这种方法,我们可以高效地找到最优解。

    转载地址:http://xifmz.baihongyu.com/

    你可能感兴趣的文章
    oauth2.0协议介绍,核心概念和角色,工作流程,概念和用途
    查看>>
    OAuth2.0四种模式的详解
    查看>>
    OAuth2授权码模式详细流程(一)——站在OAuth2设计者的角度来理解code
    查看>>
    oauth2登录认证之SpringSecurity源码分析
    查看>>
    OAuth2:项目演示-模拟微信授权登录京东
    查看>>
    OA系统多少钱?OA办公系统中的价格选型
    查看>>
    OA系统选型:选择好的工作流引擎
    查看>>
    OA让企业业务流程管理科学有“据”
    查看>>
    OA项目之会议通知(查询&是否参会&反馈详情)
    查看>>
    Vue.js 学习总结(13)—— Vue3 version 计数介绍
    查看>>
    OA项目之我的会议(会议排座&送审)
    查看>>
    OA项目之我的会议(查询)
    查看>>
    OA项目之我的审批(会议查询&会议签字)
    查看>>
    OA项目之项目简介&会议发布
    查看>>
    ObjC的复制操作
    查看>>
    Object c将一个double值转换为时间格式
    查看>>
    object detection之Win10配置
    查看>>
    object detection训练自己数据
    查看>>
    object detection错误Message type "object_detection.protos.SsdFeatureExtractor" has no field named "bat
    查看>>
    object detection错误之Could not create cudnn handle: CUDNN_STATUS_INTERNAL_ERROR
    查看>>